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Abstract

This paper presents a logic of generalisation TLIG: an algorithm for
constructively deriving correct generalisations from a set of observations,
i.e. an induction procedure. TLIG is heavily based on the concept of
theory, which is a set of propositions, and the operations between theories.
Applications of TLIG include artificial intelligence, especially machine
learning, insight into the operation of inductive processes, and ways to
apply logic to real-world phenomena.
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1 The reasoning process of generalisation

Consider a very common reasoning process that is based on an interesting sit-
uation: two individuals, say Tom and Sally, never show up at the same time.
When you see both frequently but never at the same time, you start to sus-
pect a dependency between the two states of affair, which could be expressed
as (Va)—Present(«, Tom) V —Present(a, Sally), that is, for any event «, either
Tom or Sally is absent from «.

The theory-based logic of inductive generalisation (TLIG) is an attempt to
formalise this kind of reasoning. It is an algorithm to construct, from a set
of observations, all the rules that hold across the individuals involved in the
observations. TLIG is based on three central ideas:

1. the correct generalisations are those that are unrefuted by our observa-
tional data;

2. generalisations can be formed from particular instances by substituting
arbitrary terms in them with variables; and

3. the differences between observational situations can be used to systemati-
cally construct rule candidates, disjunctive claims that have the potential
to hold over the whole range of our observations when generalised.

I will first define what I mean by induction in this paper, followed by a quick
survey of earlier approaches to logic of induction and their relation to TLIG.
Then, I define the language and theory operations of TLIG, and provide some
examples of their results.

This article uses many words in a manner that either differs from common
usage or is more precise than the common use of the word. Listed below are
the definitions of such terms.

event An atomic unit of phenomenal world. Epistemologically, an event is the
source of new information.

observation Experiencing an event.

conceptualisation A proposition or set of propositions that describe an event.
situation A set of events.

condition Any attribute of a situation.

theory A set of propositions.



observational theory A theory that describes some situation.

generalised theory A theory that is produced from another by tentative gen-
eralisation.

context A set of background assumptions that can be partially unspecified.
The propositions of a theory are all relative to a common context, the
context, of the theory.

merging of observational theories Producing a new theory that describes
a situation that is a union of the situations of the argument theories.

particular proposition A proposition that has no universally quantified vari-
ables in it (a ground clause). A proposition p is more particular than
another proposition ¢ if ¢ has variables in every place where p has.

generalisation A proposition formed from a more particular one by universally
quantifying some of its terms.

rule candidate A disjunction of propositions formed by merging two observa-
tional theories.

rule A generalisation of a rule candidate.

2 Formal systems of induction

Flach [Fla95, 16-17] explicates the two-step process of inductive reasoning that
dates back to C. S. Peirce. The steps of the process are (1) construction of new
hypotheses from observations, called abduction by Peirce; and (2) Evaluation
of these new hypotheses for acceptability, plausibility etc., called induction by
Peirce. This distinction is also present behind Popper’s Conjectures and Refuta-
tions: conjectures are constructed scientific theories, suggested but not certain;
in the process of evaluating them, some are refuted while others are not.

However, even though both steps — construction and evaluation of hypothe-
ses — have been acknowledged in the philosophy of induction from the very be-
ginning, most of the work in the area has been put into the formalisation of the
latter. The reason is easy to see: on one hand, classical logic is too rigid to deal
with hypotheses, so there is an acute problem with evaluation of hypotheses;
on the other hand, the construction of new hypotheses presents an essentially
open-ended problem as it does not need to obey any specific rules.

However, for both practical and theoretical reasons, it is important how
hypotheses are constructed. Firstly, the construction of hypotheses occurs as an
everyday phenomenon and its formalisation provides important insight into the
operation of human mind and means to build effective systems that are able to
construct new hypotheses. Secondly, some hypotheses are clearly more sensible
than others while being equally plausible in the light of some observations. For
instance, an agent that observes many sunny days but no cloudy ones might
conclude that all days are sunny, or that all trees are sunny. Both are possible
hypotheses from the same observations, but the former feels more relevant than
the latter. This suggests that it is possible to give a normative description of
how relevant hypotheses are obtained from examples.



In this section, I first talk about the meaning of “induction”. Then I take a
look at different frameworks to tentatively propose, evaluate, and refute propo-
sitions; and in the last part, I study different approaches to constucting hy-
potheses.

2.1 What is induction?

The terms ¢nduction and abduction warrant a terminological note. Both are
nowadays used to refer to many phenomena, but the most widely accepted def-
initions are probably these: induction is reasoning that produces a general rule
out of many particular instances, while abduction is “inverse deduction”, rea-
soning from conclusions to premisses. But general propositions usually logically
entail their particular instances, and premisses logically entail their conclusions.
Thus, for many cases, the definitions actually coincide or at least overlap: both
are types of reasoning where we take a proposition p and produce from that
other propositions that logically entail p.

However, there are two alternatives as to what it means to produce a “general
rule” out of instances, as explained by [Fla95, 16-26]. Both kinds of induction
produce rules that are not refuted by the observations. However, the positive
qualifications differ: in ezplanatory induction the rules must imply (or “explain”,
hence the name) the observations, i.e. abduction; in confirmatory induction the
rules should just be unrefuted. So every theory that explains the observations is
confirmed by them, but not vice versa. The logic of confirmation was formally
studied by Hempel [Hem43].

As Flach notes [Fla95, 26], the difference between the two kinds of induction
is essentially in the direction of the transitivity of the relation. If a set of
observations F is explained by a theory T, it is also explained by a stronger
theory T" — T, whereas if E confirms a theory T, it also confirms a weaker
theory T" for which T — T".

However, induction is just not a search for any theory that explains or is
confirmed by our observations. The union of all our observations both explains
and is confirmed by itself. Any consistent theory that implies it is “better” in
the sense that it is more general. So, if we are allowed to include facts about
the individuals in the observations in our theory, induction means producing
a maximal theory that is consistent with our observations. Such a theory, of
course, also explains our observations, since it is maximal. This is the kind of
result that TLIG constructs.

If propositions about individuals are not allowed in our theory, explanatory
induction is not always possible. It is possible in the case that the generalisa-
tions can be explained without referring to the factual treats of the individuals
involved; for instance, abstract data types such as numbers and lists possess no
factual treats that cannot be known from the expressions that refer to them.
But real-world individuals, such as the earth, have many properties that just
happen to be true or false for that particular individual. However, even in
such cases, it is possible to look for a maximal theory that is confirmed by the
observations.

An illustrative example is the classic “all ravens are black™ (Ya)Ra — Ba.
It is an inductive rule, but does not ezplain the blackness of an individual r
unless we additionally know that r is a raven, and it does not explain r not



being a raven, unless we know that r is not black. However, it is certainly a
hypothesis that is confirmed by numerous individuals.

2.2 Frameworks for evaluating hypotheses

Classical logic deals with truth: deriving irrefutably correct consequences from
irrefutably correct premises. However, the requirement of irrefutably correct
premises is usually too strong for information about the real world. For instance,
there is no way to obtain an irrefutable rule from experience: there is always a
possibility that future experiences will refute our rule.

Consequently, any system that wants to allow for refutable truths must em-
ploy a framework that formalises the process of retracting propositions when
they are refuted and keeps track of which propositions should be refuted and
when. This subsection provides a survey of these frameworks.

This article shows a way to systematically use a fragment of first-order pred-
icate logic (FOL) to keep track of situations that have existed and form correct
rules (generalisations) from this information. The information is used in two
ways: firstly, to come up with relevant rule candidates in the first place; sec-
ondly, to drop out those rules that have counterexamples.

To deal with these tentatively true generalisations, a concept of theory is
used. There are two kinds of theories in this framework: those that collect infor-
mation about the world (observational theories), and those that are generalised
from this information. In our system, when new observations are obtained, the
old generalised theory is outdated and a new one is formed from our updated
information.

This logic of generalisation thus is a framework to describe correct generali-
sations when our information about the world is incomplete (as it necessarily is)
and the correct action when facing new information. What it does not take into
account, however, are incorrect observations or incorrect conceptualisations of
observations; for these, even more delicate means have to be developed.

2.2.1 Bayesianism

The Bayesian tradition is probably the most prominent among inductive frame-
works. In this framework, each proposition is associated with a probability that
changes dynamically as new observations are acquired. When a new hypothesis
is formed, it is assigned a prior probability; as relevant information comes in,
this probability may rise or sink. The latter is a soft form of “refutation”.

It would be interesting to attempt to use the Bayesian approach with the
hypothesis-formation techniques presented in this paper. However, the dynamic
probabilities are heavily affected by the prior probabilities of the propositions.
If we take our observations to be certain, the method degenerates into a flip-flop:
an observation that is consistent with our hypothesis keeps the probability of
the hypothesis, while a counterexample nullifies it.

I have chosen not to use probabilities in this paper to simplify the theory-
based logic of inductive generalisation and to avoid having to invent an algorithm
providing initial probabilities for hypotheses and observations.



2.2.2 Adaptive logic

Adaptive logics [Bat01] are a natural fit for inductive reasoning, but not con-
strained to it. An adaptive logic has a lower limit logic whose rules are safe in
the sense that the conclusion unconditionally follows from the premisses, and an
upper limit logic whose rules can be used to form tentative conclusions. Every
proposition is associated with the propositions it depends on; if a proposition
is contradicted, this information is used to track the contradiction back to its
source(s). This is a kind of a constructive reductio ad absurdum.

The point of adaptive logics is to provide a framework that (1) matches the
dynamics of human reasoning and (2) provides a way to construct maximally
consistent consequence sets from rules of reasoning that would lead to inconsis-
tent results if applied without constraints. There are many different adaptive
logics that could be used as a basis for induction. These differ in choice of the
lower limit logic, the upper limit logic, and the adaptive strategy that is used to
retract propositions when contradictions (or “abnormalities”, in the terminology
of adaptive logics) occur.

It is possible to combine adaptive logics with the theory-based approach
taken in this paper. The only reason for not doing so is to keep the theory-
based logic of inductive generalisation as simple as possible. Theories, which are
already needed for construction of disjunctive hypotheses, provide a sufficiently
powerful tool for the needs of TLIG, so there is no need to use an adaptive
logic as a backbone for the system. However, one possible direction of future
research could be an adaptive logic of induction that employs some scheme of
forming disjunctive generalisations that is not based on theories.

Batens [Bat05] proposes a straightforward logic of induction (LI), which
heavily restricts the kind of generalisations we can make: they cannot contain
constants and they are always of the form (Vzy...)Pzy... — Qzy..., where
P and @ are first-order logic clauses dependent on the variables z, v, ...

Meheus [Meh05] studies a logic of abduction LAX. This logic is based on
adaptive logic and is specifically designed to allow for comparing already falsified
generalisations (scientific theories). Adaptive logic is only used to invalidate old
abductive explanations when they are proven trivial or when better explanations
are available. Mutually inconsistent generalisations are handled with a modal
logic: they are given a modality that prevents derivation of trivialities from
them.

2.2.3 Theory-based approach

The theory-based logic of inductive generalisation presented in this paper relies
on the concept of theories, as the name says. Instead of having a single set
of propositions all with a similar ontological status, we have multiple sets, or
theories, of propositions. The propositions in one theory are related by having
the same context, or domain of discourse. Theories are related to each other in
various ways that are explicitly specified.

Theories, also called contexts, situations, and microtheories, were devel-
oped in artificial intelligence research to formalise the way people use logic (see
[McC87], further formalised in [McC93]), but have similarities with models and
possible world semantics. Usually, whenever we have a statement whether writ-
ten in a logical language or not, it is relative to some contezt. It is almost always



possible to discover another context where the statement is false. So it makes
sense to group statements together when they are meant to be interpreted in
the same context.

The way theories are used as the framework for induction in this paper,
there are two kinds of theories: observational theories that describe observations
of particular situations, and generalised theories produced from these. The
propositions that result from generalisations are never “retracted”; since they
are always sensible with respect to the data they were originally constructed
from; on the other hand, a theory that might have been relevant at some stage
can become outdated when new observation data are available.

2.3 Construction of hypotheses

Mitchell’s concept of version space [Mit82, 204] provides a theoretical framework
for talking about possible hypotheses. The version space contains different ver-
sions of generalisations, each of which matches a set of instances. The task is to
find the generalisation(s) that match(es) all of a set of positive instances while
matching none of a set of negative instances.

For induction, a generalisation is a logical formula and an instance is a con-
ceptualisation of an observation (which is also a logical formula). The positive
instances are our observations and negative instances are their negations. A
logical formula “matches” an instance when it logically implies it. This allows
us to reformulate the problem of finding a correct inductive generalisation thus:
given a set of propositions that describe observations, produce a logical formula
that implies these propositions while being consistent with them, i.e. not imply-
ing their negations. It may be noted that since the generalisation must imply
our observations, it would have to be inconsistent itself in order to imply their
negations. Consequently, a generalisation is simply a consistent logical formula
that implies the propositions that describe our observations.

Such an inductive generalisation is usually not uniquely defined. Every (con-
sistent) theory has as its generalisation at least the theory itself, while other
generalisations are possible. Consequently, we choose the most general gener-
alisation (MGG) as the most interesting of these. The MGG is a clause ¢ € G
such that (Vg € G)(ct g), where G is the set of generalisations that are correct
for our observations.

The generality of logical formulae forms a partial order (which is the same
as the partial order of entailment). In the case of non-recursive predicates,
this partial order is very elegantly described by the notion of 0-subsumption: a
clause ¢; f-subsumes another clause ¢, if there is a substitution s from variables
to arbitrary terms such that the disjuncts of ¢;[s] are an improper subset of
disjuncts in cy. The significance of #-subsumption is that given a clause ¢, one
can algorithmically construct all (non-recursive) clauses that imply ¢ or that
are implied by c¢. Plotkin [Plo71] was the first one to notice the difference
between #-subsumption and implication. A thorough analysis of #-subsumption
and implication is in [TA93].

Most attempts to make systems that synthesise hypotheses come from arti-
ficial intelligence. This section studies these approaches.



2.3.1 Top-down 6-subsumption

Under 6-subsumption, a clause can be made less general in two ways: (1) by
substituting all occurrences of a given variable in it by some term (e.g. a variable
already in use, a constant or a function expression) or (2) by adding a disjunct
to it. Shapiro’s Model Inference System [Sha8l] induced logic programs by
simply searching the version space from the most general predicate definition
(one where all parameters are universally quantified) towards the specialisations
in order of “simplicity”. The search was complete when a definition was found
that implied all the positive examples while implying none of the negative ones.

The problem was formulated to better match the formalism, Prolog, where
this search took place. Clauses were restricted to Horn clauses and the solution
was not required to imply the negations of negative examples, not implying them
was sufficient. The system is elegant in its own way but very inefficient, because
the space of possible clauses is enormous: it contains all possible predicate
definitions. Especially the adding of disjuncts (called literals in Prolog parlance)
causes the search tree fork a lot.

Top-down search in the version space can be improved by generating more
efficient search techniques. Since these optimisations in search mean delaying
some possibilities or not considering them at all, they present a difficult balanc-
ing problem between generating too many results and omitting some interesting
results.

2.3.2 Inverse resolution

It is wasteful to search the whole version space for solutions, when the exam-
ples already give hints about what kind of generalisations could be relevant
for the current case. By inverting rules of deduction, we can construct from a
proposition p those propositions that logically entail p. This is the approach
in Muggleton’s CIGOL [MB88] which inverts the deductive rule of resolution
in various ways in order to obtain more general clauses as explanations of the
examples.

This approach resembles the one taken in this paper, because in the theory-
based logic of inductive generalisation, generalisations are constructed by mov-
ing up the @-subsumption hierarchy. Under #-subsumption, a clause can be
made more general in two ways: (1) by replacing some or all occurrences of a
term t with a new (previously unused) universally quantified variable or (2) by
taking away a disjunct from it. However, since every example is non-disjunctive,
this means that in practice only (1) is possible, which is equivalent to inverting
the rule of universal quantification elimination.

CIGOL is also interesting in that it creates new concepts (predicate defini-
tions) heuristically. New concepts are created when they express the information
content of the examples more succinctly than the previous predicates. Human
intervention is of course required to give these concepts meaningful names (to
humans, that is).

2.3.3 Relative least-general generalisations

Another method for constructing generalisations from the examples is combining
the examples. The relative least-general generalisation (RLGG) of two propo-
sitions p and ¢ is the most specific clause that, with a given background theory



', implies both p and ¢. The program GOLEM [MF90] finds generalisations by
combining examples in this way.

RLGG’s expose the problem of combinatorial explosion in another way: the
propositions constructed by RLGG can be very long (even infinite with some
background theories). They are also completely dependent on a sensible back-
ground theory, because the resulting proposition has to imply both p and ¢
without referring to either. The theory-based logic of inductive generalisation
does not aim so high: the theory may include propositions about individuals,
so examples can be used as explanations of one another.

3 How TLIG works

When searching generalisations, it is easy and efficient to find basic generali-
sations of the examples — those that are obtained by universally quantifying
some terms in the examples. However, these generalisations are insufficient to
describe the truth conditions of a predicate, because the truth of a predicate
might depend on the truth of another. So, additionally we need a means to
produce disjunctions of the ground clauses that might be causally connected to
enable generalisation from these disjunctions.

The idea of TLIG is to use the differences between observational theories
to find these causal dependencies. Given two theories I' and A, we construct
disjunctions of propositions that are found in one theory but not the other.

The process of forming generalised theories from observations proceeds by
the following steps:

1. Simple observational theories are formed from observations by conceptu-
alising them.

2. The basic theories are merged to obtain more elaborate observational the-
ories that describe multiple observations. These theories only contain
information that is irrefutably true within the context of the observations
described.

3. In the process of merging, disjunctions are formed between propositions
that could have a dependency.

4. The combined theory of all observations is used to form generalisations:
propositions that are more general (under #-subsumption) than those
which describe the observations.

5. From these generalisations, those are filtered out that are incompatible
with our observations.
3.1 Forming the initial theories

Well-known examples of propositions in classical first-order predicate logic (FOL)
do not show how FOL can be used to describe observations for several reasons.
For instance, the classic proposition

Man(Socrates)



which states that Socrates is a man, cannot describe information obtained from
an observation for two reasons.

Firstly, the proposition is too broad to be the result of an observation: it
effectively claims that Socrates is a man independent of the situation, world, or
domain of speech of the claim. An observation does not have enough information
to rule out the possibility that Socrates will turn into a plant during night-time
or when no one sees.

Secondly, the proposition makes an ungrounded assumption about the wva-
lence (or arity) of the predicate “Man”. Semantically, this assumption translates
into a conviction that being a man does not depend on external factors. For
instance, whether Socrates is a man does not depend on who is judging. This
might be unproblematic in the case of “man” (although I doubt it). However, it
is not uncommon for further investigation to show that supposedly unary predi-
cates — attributes, such as “good” — prove to be binary relations, and relations
in general prove to have a greater valence than was supposed.

The problems can be solved by introducing the event of each observation
as the first parameter of every predicate. An event constant uniquely identifies
the observation in which the relation was observed. Adding it as a parameter is
effectively equivalent to claiming that our proposition is particular to a certain
observation. Because every situation we might speak of has its unique set of
events, the event holds information about everything that might be relevant to
the truth of our proposition.

It is quite clear that the event parameter prevents the proposition from
being too broad. What is not so evident is that the event parameter also solves
the problem of unknown valence. This is because every proposition that has
too few parameters (for example, Good(eg, Sunshine)) is in practice universally
quantified with respect to a parameter that it should not be. Thus, there is
an unnoticed condition that needs to hold for the proposition to be true (for
example, OpinionOf(eg, Panu)). So the proposition that really holds is actually
Good(eg, Sunshine) V ~OpinionOf (eg, Panu), and too low a valence is equivalent
with not noticing some condition that affects the truth of a predicate.

3.2 Explorative logic

Explorative logic (EL) is the part of TLIG that is used in observational theories.
For generalisations, full FOL is used. EL is a fragment of FOL: it only contains
ground clauses, so it is in practice a logic over a Herbrand universe.

3.2.1 An overview of EL

The explorative logic of generalisation (EL) deals with information that can
be safely concluded from experience. In practice, EL is a simplified version of
FOL accompanied with the theory-merging operation, .

EL differs from normal FOL in the following ways:

1. EL does not deal with universally quantified variables, because no obser-
vation could possibly justify a universal claim.

2. Propositions are kept in negation normal form (NNF') and conjunction
normal form (CNF). This means that negation symbols are only found in
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front of atomic formulae and theories are sets of disjunctions of atomic
formulae.

3. Constants are used for both known and unknown individuals, so there is no
need for existentially quantified variables, and, consequently, for variables
at all.

Theories are merged for two reasons: to ultimately gather information about
experience into one theory, and to construct good candidates for disjunctive
rules that hold across all theories merged.

3.2.2 Formal definition of EL

As the vocabulary of EL we have:

e A set of constants, here written with a, b, ¢, ... including the event
constants ey, ea, ...

e A set of function constants, here written with f, g, h, ...

e A set of predicate constants, here written with P, Q, R, ...
e Logical operators: — (negation), V (digjunction)

e Parentheses: “(” and “)”, used to denote precedence

Expressions are defined thus:

1. A term is a constant or an expression (fab...) where f is a function
symbol and a, b, ... are terms.

2. If P is a predicate constant, e is an event constant and a, b, ... are terms,
then Peab... and —Peab... are atomic formulae.

3. A formula is either an atomic formula or (pV¢) where p and g are formulae.

4. A proposition is a formula.

EL deals only with observational theories. There are no rules of deduction
in EL. The only activity that resembles reasoning is the process of merging
theories and generalising from them.

3.2.3 Examples

Suppose we have an event e; where we observe sunshine. We could conceptualise
this observation as the proposition Se;, where S means sunshine and e; is the
constant that names this particular event. On the other hand, there could be
another event es where we observe lack of sunshine, giving —Ses.

A proposition need not be about an event in general. We can use constants
to denote concepts within and across events. For instance, if we observe that
Peter is taller than Tom in an event e, we can conceptualise this as Tepj (T
means taller, e means this event, p means Peter, and j means John). If we
observe the same fact in another event ey, we can conceptualise it as Tespj.

11



3.3 Operations between theories

The operations between theories form the backbone of the framework of logic of
generalisation. They include & (merge) and gen (generalise), presented below.
Merging produces new observational theories that cover the situations covered
by earlier theories while being careful to retain the truth of all claims; general-
isation uses the results of merging to find general rules that are undefeated as
yet. The theories that are arguments of @, as well as the result, only contain
clauses in EL; however, results of gen contain clauses in full FOL.

3.3.1 Definition of ®

An observational theory I' is a set of propositions that describes a particular
situation. The merging of theories, T@A,! produces a new theory that describes
a situation that is a union of the situations of I' and A. The merged theory
includes relevant information that can be derived from I" and A collectively.

Let us denote the terms of a proposition p by terms(p). A event substitution
of a proposition p is p[t/e] where ¢ € terms(p) corresponds to an event (is in the
first place of some predicate), e is an event constant and p[t/e] means p with
occurrences of ¢ replaced by e. An event substitution is safe for a theory I' if
it does not substitute with an event constant that is already in use in I'. The
substitution set ss(T', e) is defined as:

ss(T',e) = {p[t/e] | p e T}

where p[t/e] is an event substitution that is safe with respect to I'. The set of
possibly causally relevant substitutions pers(D, A, e) filters out irrelevant formu-
lae from the substitution set:

pers(I,Ave) = {plpess(T,e),pgss(A,e)}
U {plpessT,e),pess(Ae),pdss(T,e)}

The set of rule candidates rc(T', A) is given as disjunctions of causally rele-
vant propositions in I' and A with different events in different theories replaced
by a common event:

1o(T, A) = {pV q | p € pers(T, A, ¢), g € pers(A, T, )}
where e is a new event constant. This allows us to devise a definition of @:

Fre A=TUAUrc(T,A)

3.3.2 Rationale behind ©

A simple union of propositions is not sufficient for merging theories. It disre-
gards potentially interesting rules that arise from the possibility that differences
between theories are causally relevant. However, although it is not sufficient to
include the propositions from the argument theories in the resultant theory, it

IThe symbol @ is an arbitrary choice for the merge operation which does not have an
allegoric well-known operation.
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is safe to do so. This is why: a proposition p € T" is about an event e (known or
unknown) that belongs to the situation described by T'. Since the event must
also belong to the situation described by ' @ A, p € T implies p € ' & A.

The propositions that are good candidates for building rules are disjunctions
where:

1. One of the disjuncts comes from I' and the other from A.

2. The disjuncts talk about at least one common individual, so they depict
a dependency between two predicates.

In order to obtain more propositions that satisfy condition (2), we can substitute
terms of propositions in I' and A with constants not previously occurring in T'
or A. This is equivalent to existence introduction and then weakening the result
by disjunction introduction. For instance, if ' has Ce; (e is counterfactual”)
and A has Fey (“ey is factual”), these can be rewritten to Ce’ and Fe' to form
a disjunction that may be later generalised to showing a causal relationship
between counterfactuality and factuality.

In principle, we could generate all possible disjunctions whose disjuncts are
some propositions of I' and A with constant substitutions. However, it turns out
that the number of generated disjunctions can be drastically reduced without
losing any causally relevant ones by two simple measures: considering which
terms are connectable, and filtering out disjuncts that are causally irrelevant.

There are many possible criteria as to which terms are connectable, i.e.
good candidates to substitute with a common new constant that makes the
formulae satisfy condition (2). In this paper I am especially interested in finding
causal relationships that hold across events, so the @ operation presented here
only connects event parameters. Other options include connecting all terms
that occur in the same place of a predicate or function, or employing a type
framework to cut down insensible connections.

For reasoning about causal relationships, I defined the concept of substitution
set. A substitution set of a theory I' is the set of propositions that is obtained
from T" by substituting mutually connectable parameters by a common constant.
For any proposition p, the substitution set may lack it, include it, include its
negation, or include both. If the substitution set has both an affirmative and
negative version of a proposition, that proposition is factual in theory T' with
respect to the connected parameter, i.e. its truth depends on the value of the
substituted parameter.

It is possible to filter out causally irrelevant propositions by comparing the
substitution sets of the theories being merged. If the status of a proposition p
is the same in both substitution sets (absent, affirmative, negative, or factual),
it cannot be used to explain differences in other propositions and so is left out.
And if the proposition is factual in one and affirmative / negative in the other,
the only interesting disjunct on the factual side is the one that is the complement
from the other side.

For instance, if ' has Hejx (“x is a human in event e;”), and A has Desy
(“y is a dog in event e2”), then I'@® A should have (He'zV De’y) (“there is either
a dog y or a human z in some event”). But if A also has Hesx, we can safely
conclude that the humanity of x is irrelevant to the dogness of y. On another
occasion, if T has Hejx and A has Deyz, then I'® A should have (He'zV De'x)
(“z is either a human or a dog in some event.”)

13



3.3.3 Generalising

When we have the information gathered by merging, it is relatively easy to devise
the generalisation operation. A generalisation of a theory gen(T") is simply the
set of universal propositions that have examples but no counterexamples in I'.
The argument of gen(I") is an observational theory in EL, but the result is a
generalised theory in FOL.
A generalising substitution of a proposition p is (Va)p[t/al, where t € terms(p),

« is an universally quantified variable previously unused in p and p[t/a] means
p with occurrences of ¢ replaced by «. The generalisations of a proposition p is
defined as:

gen(p) = {p} U{(Va)q[t/a] | ¢ € gen(p)}

where (Var)q[t/a] is a generalising substitution. The generalisations of a theory
T" are defined as:

gen(T) = {q| g€ gen(p),p e I, TU{qg} I/ L}

Then, let us look at the rationale behind gen. When we have a particular
proposition making an example of a universal proposition, we can form a more
general proposition simply by substituting some or all occurrences of a term ¢
with an universally quantified variable. This process gives us a new proposition
that #-subsumes our original proposition; the process can be repeated until all
terms in the formula are universally quantified variables. For instance, if we have
the claim Hep (“Panu is a human in event €”), the corresponding generalisations
are (Va)Hap (“Panu is (always) human”), (Va)Hea (“everything is human in
event €”) and (Va)(VB)Hag (“everything is human”).

While partial substitutions (substitutions where only some of the occurrences
of a term t) are possible, they generate uninteresting results because they break
causal relations between disjuncts. If the resulting “rule” is consistent, it can
only be used to prove things that are already known. This is because merging
leaves the original disjuncts in the merged theory, so they are available to directly
generalise from. Thus,; we disregard partial substitutions.

If a generalisation has counterexamples, it forms a contradiction when com-
bined with I". This gives us a simple way to filter out generalisations that have
counterexamples.

3.4 Examples: putting it all together

In this section, we walk through a couple of examples to see what kind of results
TLIG yields.

3.4.1 Causal connections of weather

For this example, we pick the following predicates: Se means sunshine in event
e, Ce means cloudy weather in event e and Re means rain in event e. An
observation of a cloudy day is conceptualised as:

Fl = {ﬁSel, Ceh ﬁRel}

If this is all the data we have, our generalised theory looks like this:
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gen(I'y) = {(Va)=Sa, (Va)Ca, (Ya)-~Ra}

Another similar day does not alter our generalisations. Let I's be a similar
conceptualisation about another event, e5. Then the merged theory contains no
additional disjunctions, because there are no differences in the event-substituted
clauses of I'; and TI's:

I'oely = {—‘561,061,_‘Rel,_‘sez,CEQ,_'RBQ}

The generalised theory gen(T';y @ I's) = gen(I'y) = gen(I'y). But suppose
there is another day when it is raining in addition to being cloudy. We have:

Fg = {ﬁSeg, Ceg,Reg}

Now I'; ©T'3 has a new disjunction, Re’ vV —Re’, but this can be dropped out
because it is a tautology. Thus I'y @ I's is effectively the union of the theories
and

gen(l'y @ T's) = {(Va)Ca, (Va)-~Sa, —Rey, Res}

because any more general proposition about rain is refuted by one or the other
of the particular statements.
Then, let us have a sunny day. With this, we have:

I'y = {Sesq,—Ceyq,—Rey}
sy (T1@T3) = {Re'VvSe, Se'vCe,-Ce Vv Re,

-Ce' vV —=Se',~Re' vV —~Se',~Re' v Ce’}

U Ihul'suly

gen(l'y @ Ty @T3)) = {(Va)CaV -Ra,

(Va)-Ra V —Sa,
(Va)-Ca Vv -Sa,
(Va)Ca Vv Sa,
Re' v Se’',-Ce' Vv Re'}

U Ihulsuly

This lets us note a couple of interesting things. First, the ground clauses
of the observations are present in the generalised theory, because the general
clauses no longer imply them. However, if any single singular proposition is
taken out, the others imply it together with the generalisations if this is possible
(it is not in the case of Res which has to be taken as factual in the light of our
observations). In a way, the observations work both as the explanans for each
other and the explananda.

Second, there are now some leftover disjunctions (Re’ V Se/, =Ce’ V Re’) in
our generalised theory that are not subsumed by any general rule. These are
side products of the merging process: rule candidates whose universality cannot
be proven impossible by looking at the substitution sets of different situations.
However, when a generalisation is attempted from them, the generalisations are
refuted by instances in the observation data.
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Third, we have as broad generalisations as possible because TLIG constructs
every (event-relative) generalisation that has not been refuted. For instance, we
already have the rules that rain implies cloudy weather, rain and sunshine are
mutually exclusive, and clouds are equivalent with no sunshine.

3.4.2 Observations of the physical height of two individuals

Another example, which demonstrates how non-unary predicates work, is a set of
observations about two individuals. T have chosen a subjective conceptualisation
to better match the kind of data that an independent agent might have. There
are two predicates, T'exy which means “x looks taller than y in event ¢’ and
Nexy which means “x is nearer (the observer) than y in event ¢”, and two
individuals, John (j) and Peter (p). John is actually taller than Peter, so he
looks taller whenever he is nearer than Peter. With this, we may have the
following observations:

't = {Teijp,~Teipj, Neijp,~Neipj}
Iy {Teapj, ~Tezjp, Neapj, ~Nezjp}
I's {Tesjp,~Tespj, Nespj, ~Nesjp}

The merged theory looks like this:

e @eols) = {(Te'pj) Vv (Tejp), (Tejp) v (Ne'pj), (Te'jp) vV (=Ne'jp),
(=Te'jp) v (=Te'pj), (~Te'pj) V (Ne'pj), (=Te'pj) V (~Ne'jp),
(Ne'jp) v (Te'pj), (Ne'jp) V (=T€jp), (Ne'jp) V (Ne'pj),
(mNe'pj) V (Te'pj), (~Ne'pj) V (=T€ jp), (~Ne'pj) v (~Ne'jp)}
U Iiul,ul's
The generalised theory is too long to clearly present here — 40 clauses not
f-subsumed by each other. The added number of clauses is mostly due to more
places in predicates. This leads to more partial generalisations, such as gener-

alised sentences particular to Peter. There are three kinds of generalisations in
the theory:

1. Generalisations with no constants (except predicate constants), that usu-
ally point to general treats of the predicates involved, such as

(Vo) (VB)(Vy)~Nafy V -Nays3
(something cannot be nearer than a thing that is nearer than it).

2. Non-disjunctive generalisations about individuals. In our theory, the only
individuals that allow such generalisations are events; for example, (Vo )Tesja
(John looks taller than anything else in e3).

3. Disjunctive rules about individuals, such as (Va)(VB8)TajfB vV -Najg (if
John is nearer than something else, he always looks taller).
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The third kind of generalisation is very interesting. It cannot be used to explain
individual facts about our observations as such because it doesn’t imply them,
but it gives a clue that there is a property which the individual j has and which
is not universal. This can be used as a base for concept formation. To add the
new concept to our theory, we can augment the rule into (Vo) (V) (Vy)-T"v VvV
TayB V ~Nay3 where T’ is a new predicate (intuitively meaning “tall”), and
add the fact that 775 (John is tall).

4 Significance of TLIG

While TLIG is mostly based on earlier work especially in the field of inductive
logic programming, it also presents some novel ideas. These ideas and open
questions are studied in this section.

4.1 Theories as a framework

The concept of theory contributes an enormous practical and theoretical help
to this paper. The idea is that no proposition is ever “just there” it always
belongs to some theory that is relative to some context. A context is a (usually
partially unspecified) set of background assumptions.

The observational theories in TLIG have the background assumption that
they describe observations of some particular situation. The definition of &
is heavily motivated by intuition about how rules can be formed by observing
differences between situations. In the case of observational theories, the theory
framework provides a way to reason about situations.

On the other hand, the generalised theories in TLIG have the background
assumption that they are thought experiments (not unrefutably true) that hold
universally true in the light of observations that we have about some particular
situation. In this case, theories provide a way to tentatively propose general-
isations without messing our observational data with them. These generalised
theories could be combined with other observational data to make predictions.

In general I think that theories capture an important aspect of human think-
ing. TLIG can be seen as an application that demonstrates the practical and
theoretical value of theories and operations between them. One possible direc-
tion of future work is a reformalisation of TLIG in other formalisms, such as
adaptive logic.

4.2 The @ and gen operations

Perhaps the most original feature of TLIG is the @ operation, which constructs
rule candidates that might be causally relevant. Further work may define what
it actually means for a disjunction to be “causally relevant”. Then it would be
possible to show whether or not & actually produces all such rule candidates.

However, the basic intuition behind causal relevance is this: a disjunction is
causally relevant when it has at least one generalisation that holds over the set of
our observational data, while none of its disjuncts do. That is, a causally relevant
rule candidate is a minimal disjunction whose generalisation is unrefuted.

The @ operation presented in this paper only rewrites, or connects, event
parameters in order to keep the combinatorial explosion of disjunctions down.

17



However, a more sophisticated connecting scheme could provide more interesting
rules.

The generalisation operation gen forms generalisations by moving up the
#-subsumption hierarchy. However, this does not produce all clauses that imply
the original proposition, since in the case of recursive predicates, #-subsumption
may miss some generalisations. It should be possible to extend gen to include
more generalisations; inverting implication in general is studied in [Mug92].

4.3 Concept formation

As noticed in the height observation example, constants that are left in gen(I")
imply that there is something special about these individuals. It is possible to
form new concepts in the following way:

1. All particular claims that have a similar form up to variable and constant
renamings are gathered together.

2. These claims are replaced by one generic rule by introducing a new pred-
icate whose truth for particular individuals implies that the rule holds for
those individuals.

3. The new predicate is then used to enumerate those individuals for which
the rule holds.

4.4 Mistakes in conceptualisation

The observational theories in TLIG are taken to be irrefutably true, but this ac-
tually holds only as far as the conceptualisations of our observations are correct.
It would be interesting to extend TLIG with measures to deal with problems
of incorrect conceptualisation such as accidental homonymy or synonymy.

In the field of computer ontologies, contexts (or theories) are sometimes used
to combine ontologies that use constants differently; see e.g. [dLdMO05]. This
suggests that it would be possible to augment the ® operation to be flexible
enough to combine sensibly observational theories that use constants (names)
differently.

Another direction is to make gen somewhat more resilient towards incorrect
observations. For instance, it would be possible to keep track of the number of
rules that a particular observation refutes. If the number of such rules is very
high, that could be grounds to assume that the observation is incorrect, so the
observation would be refuted instead.
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